Stochastic Recruitment Control of Large Ensemble Systems With Limited Feedback

Author:

Odhner Lael U.12,Asada Harry34

Affiliation:

1. Mem. ASME

2. Department of Mechanical Engineering, Yale University, New Haven, CT 06520

3. Fellow ASME

4. Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

Abstract

A new approach to controlling the ensemble behavior of many identical agents is presented in this paper, inspired by motor recruitment in skeletal muscles. A group of finite state agents responds randomly to broadcast commands, each producing a state-dependent output that is measured in aggregate. Despite the lack of feedback signal and initial state information, this control architecture allows a single central controller to direct the aggregate output of the ensemble toward a desired value. First, the system is modeled as an ensemble of statistically independent, identically distributed, binary-state Markov processes with state transition probabilities designated by a central controller. Second, steady-state behavior, convergence rate, and variance of the aggregate output, i.e., the total number of recruited agents, are analyzed, and design trade-offs in terms of accuracy, convergence speed, and the number of spurious transitions are made. Third, a limited feedback signal, only detecting if the output has reached a goal, is added to the system, and the recruitment controller is designed as a stochastic shortest path problem. Optimal convergence rate and associated transition probabilities are obtained. Finally, the theoretical results are verified and demonstrated with both numerical simulation and control of an artificial muscle actuator made up of 60 binary shape memory alloy motor units.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference24 articles.

1. Stochastic Modeling and Control of Biological Systems: The Lactose Regulation System of Escherichia Coli;Julius;IEEE Trans. Autom. Control

2. A Stochastic Control Framework for Regulating Collective Behaviors of an Angiogenesis Cell Population;Wood

3. How Multirobot Systems Research Will Accelerate Our Understanding of Social Animal Behavior;Balch;Proc. IEEE

4. Small Robots Team up to Tackle Large Tasks;Geer;IEEE Distributed Systems Online

5. Stable Concurrent Synchronization in Dynamic System Networks;Pham;Neural Networks

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3