An Optimum Suppression of Fluid Forces by Controlling a Shear Layer Separated From a Square Prism

Author:

Sakamoto H.1,Tan K.2,Haniu H.1

Affiliation:

1. Department of Mechanical Engineering, Kitami Institute of Technology, Kitami, 090, Japan

2. Department of Mechanical Engineering, Kushiro National College of Technology, Kushiro, 084, Japan

Abstract

This paper deals with the suppression of the fluid forces by controlling a shear layer on one side separated from a square prism. The control of the separated shear layer was established by setting up a small circular cylinder (the control cylinder) in it on one side. Experimental data were collected to examine the effects on the fluid forces and vortex shedding frequency due to variation of the position and diameter of the control cylinder. The results show that (i) the maximum reduction of the time-mean drag and fluctuating lift and drag occurred when the control cylinder was located near what would ordinarily be considered the outer boundary of the shear layer; (ii) the control of the separated shear layer by means of a small cylinder appeared to be effective in suppressing the fluctuating lift and drag rather than the time-mean drag; (iii) in the case of the control cylinder of 6 mm in diameter, the time-mean drag was reduced to about 30 percent, and the fluctuating lift and drag were reduced to approximately 95 and 75 percent, respectively; (iv) the fluid forces and the frequency of vortex shedding of the square prism were mainly dependent on the characteristics of a very thin region near the outer boundary of the shear layer.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3