Uncertainty in Finite Element Modeling and Failure Analysis: A Metrology-Based Approach

Author:

Fong Jeffrey T.1,Filliben James J.2,deWit Roland3,Fields Richard J.3,Bernstein Barry4,Marcal Pedro V.5

Affiliation:

1. Mathematical & Computational Sciences Division, National Institute of Standards & Technology (NIST), Gaithersburg, MD 20899

2. Statistical Engineering Division, National Institute of Standards & Technology (NIST), Gaithersburg, MD 20899

3. Metallurgy Division, National Institute of Standards & Technology (NIST), Gaithersburg, MD 20899

4. Departments of Mathematics and Chemical Engineering, Illinois Institute of Technology (IIT), Chicago, IL 60616

5. MPave Corp., 1355 Summit Avenue, Cardiff, CA 92007-2429

Abstract

In this paper, we first review the impact of the powerful finite element method (FEM) in structural engineering, and then address the shortcomings of FEM as a tool for risk-based decision making and incomplete-data-based failure analysis. To illustrate the main shortcoming of FEM, i.e., the computational results are point estimates based on “deterministic” models with equations containing mean values of material properties and prescribed loadings, we present the FEM solutions of two classical problems as reference benchmarks: (RB-101) The bending of a thin elastic cantilever beam due to a point load at its free end and (RB-301) the bending of a uniformly loaded square, thin, and elastic plate resting on a grillage consisting of 44 columns of ultimate strengths estimated from 5 tests. Using known solutions of those two classical problems in the literature, we first estimate the absolute errors of the results of four commercially available FEM codes (ABAQUS, ANSYS, LSDYNA, and MPAVE) by comparing the known with the FEM results of two specific parameters, namely, (a) the maximum displacement and (b) the peak stress in a coarse-meshed geometry. We then vary the mesh size and element type for each code to obtain grid convergence and to answer two questions on FEM and failure analysis in general: (Q-1) Given the results of two or more FEM solutions, how do we express uncertainty for each solution and the combined? (Q-2) Given a complex structure with a small number of tests on material properties, how do we simulate a failure scenario and predict time to collapse with confidence bounds? To answer the first question, we propose an easy-to-implement metrology-based approach, where each FEM simulation in a grid-convergence sequence is considered a “numerical experiment,” and a quantitative uncertainty is calculated for each sequence of grid convergence. To answer the second question, we propose a progressively weakening model based on a small number (e.g., 5) of tests on ultimate strength such that the failure of the weakest column of the grillage causes a load redistribution and collapse occurs only when the load redistribution leads to instability. This model satisfies the requirement of a metrology-based approach, where the time to failure is given a quantitative expression of uncertainty. We conclude that in today’s computing environment and with a precomputational “design of numerical experiments,” it is feasible to “quantify” uncertainty in FEM modeling and progressive failure analysis.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference92 articles.

1. What is a Design Defect;Ross

2. Greenman vs. Yuba Power Products, Inc., 1963, 59 Cal 2nd 57.

3. FPE - Failure Prevention Engineering: Fracture Mechanics Betwixt Designer and Failure Analyst;Rossmanith

4. Google Scholar, 2005, http://www.scholar.google.com

5. A Probabilistic Methodology to Assess the Reliability of Deteriorating Structural Elements;Ciampoli;Comput. Methods Appl. Mech. Eng.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3