Data-Driven Heuristic Induction From Human Design Behavior

Author:

Puentes Lucas1,Cagan Jonathan2,McComb Christopher3

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

2. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

3. School of Engineering Design, Technology, and Professional Programs, The Pennsylvania State University, University Park, PA 16802

Abstract

Abstract Through experience, designers develop guiding principles, or heuristics, to aid decision-making in familiar design domains. Generalized versions of common design heuristics have been identified across multiple domains and applied by novices to design problems. Previous work leveraged a sample of these common heuristics to assist in an agent-based design process, which typically lacks heuristics. These predefined heuristics were translated into sequences of specifically applied design changes that followed the theme of the heuristic. To overcome the upfront burden, need for human interpretation, and lack of generality of this manual process, this paper presents a methodology that induces frequent heuristic sequences from an existing timeseries design change dataset. Individual induced sequences are then algorithmically grouped based on similarity to form groups that each represent a shared general heuristic. The heuristic induction methodology is applied to data from two human design studies in different design domains. The first dataset, collected from a truss design task, finds a highly similar set of general heuristics used by human designers to that which was hand-selected for the previous computational agent study. The second dataset, collected from a cooling system design problem, demonstrates further applicability and generality of the heuristic induction process. Through this heuristic induction technique, designers working in a specified domain can learn from others’ prior problem-solving strategies and use these strategies in their own future design problems.

Funder

Defense Advanced Research Projects Agency

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference28 articles.

1. Understanding the Differences Between How Novice and Experienced Designers Approach Design Tasks;Ahmed;Res. Eng. Des.,2003

2. Expertise in Design: An Overview;Cross;Des. Stud.,2004

3. Assessing Design Heuristics for Idea Generation in an Introductory Engineering Course;Daly;Int. J. Eng. Educ.,2012

4. A Case-Study Analysis of Design Heuristics in an Upper-Level Cross-Disciplinary Design Course;Kramer,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3