State of Health Estimation for Lithium-Ion Batteries Based on Multi-Scale Frequency Feature and Time-Domain Feature Fusion Method

Author:

Zhao Yunji11,Liu Yuchen2

Affiliation:

1. Henan Polytechnic University Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment, , Jiaozuo 454003 , China

2. Henan Polytechnic University School of Electrical Engineering and Automation, , Jiaozuo 454003 , China

Abstract

Abstract Accurately estimating the state of health (SOH) of lithium-ion batteries is important for improving battery safety performance. The single time-domain feature extraction is hard to efficiently extract discriminative features from strongly nonlinear coupled data, leading to difficulties in accurately estimating the battery SOH. To this end, this paper proposes a multi-scale frequency domain feature and time-domain feature fusion method for SOH estimation of lithium-ion batteries based on the transformer model. First, the voltage, current, temperature, and time information of the battery are extracted as time-domain features; second, the battery signal is processed by a multi-scale filter bank based on Mel-frequency cepstral coefficients (MFCCs) to obtain the multi-scale frequency-domain features; then, a parallel focusing network (PFN) is designed to fuze the time-domain features with the frequency-domain features, which yields low-coupling complementary discriminative features; finally, constructing the SOH estimation mechanism based on the transformer deep network model. The algorithm is validated by NASA and Oxford datasets, and the mean absolute error (MAE) and root-mean-square error (RMSE) are as low as 0.06% and 0.23%, respectively.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3