Affiliation:
1. Gas Turbine Laboratory, The Ohio State University, Columbus, OH 43235
Abstract
This paper describes pressure measurements obtained for a modern one and one-half stage turbine. As part of the experimental effort, the position of the high-pressure turbine (HPT) vane was clocked relative to the downstream low-pressure turbine (LPT) vane to determine the influence of vane clocking on both the steady and unsteady pressure loadings on the LPT vane and the HPT blade. In addition, the axial location of the HPT vane relative to the HPT blade was changed to investigate the combined influence of vane/blade spacing and clocking on the unsteady pressure loading. Time-averaged and time-accurate surface-pressure results are presented for several spanwise locations on the vanes and blade. Results were obtained at four different HPT vane-clocking positions and at two different vane/blade axial spacings for three (of the four) clocking positions. For time-averaged results, the effect of clocking is small on the HPT blade and vane. The influence of clocking on the transition ducts and the LPT vane is slightly greater (on the order of ±1%). Reduced HPT vane/blade spacing has a larger effect than clocking on the HPT vanes and blades ±3% depending upon the particular surface. Examining the data at blade passing and the first fundamental frequency, the effect of spacing does not produce a dramatic influence on the relative changes that occur between clocking positions. The results demonstrate that clocking and spacing effects on the surface pressure loading are very complex and may introduce problems if the results of measurements or analysis made at one span or location in the machine are extrapolated to other sections.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献