Forced Convection Heat Transfer and Hydraulic Losses in Graphitic Foam

Author:

Straatman A. G.12,Gallego N. C.3,Yu Q.4,Betchen L.2,Thompson B. E.4

Affiliation:

1. Mem. ASME

2. Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada

3. Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

4. Thermalcentric Inc., 24 Ravenglass Cres., London, ON, Canada, N6J 3J5

Abstract

Experiments and computations are presented to quantify the convective heat transfer and the hydraulic loss that is obtained by forcing water through blocks of graphitic foam (GF) heated from one side. Experiments have been conducted in a small-scale water tunnel instrumented to measure the pressure drop and the temperature rise of water passing through the foam and the base temperature and heat flux into the foam block. The experimental data were then used to calibrate a thermal non-equilibrium finite-volume model to facilitate comparisons between GF and aluminum foam. Comparisons of the pressure drop indicate that both normal and compressed aluminum foams are significantly more permeable than GF. Results of the heat transfer indicate that the maximum possible heat dissipation from a given surface is reached using very thin layers of aluminum foam due to the inability of the foam to entrain heat into its internal structure. In contrast, graphitic foam is able to entrain heat deep into the foam structure due to its high extended surface efficiency and thus much more heat can be transferred from a given surface area. The higher extended surface efficiency is mainly due to the combination of moderate porosity and higher solid-phase conductivity.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3