The Hybrid Pathway to Flexible Power Turbines, Part I: Novel Autoencoder Methods for the Automated Optimization of Thermal Probes and Fast Sparse Data Reconstruction, Enabling Real-Time Thermal Analysis

Author:

Baker Mark1,Rosic Budimir1

Affiliation:

1. Department Engineering Science, Oxford Thermofluids Institute, University of Oxford , Oxford OX2 0ES, UK

Abstract

Abstract The global drive toward renewable energy is imposing challenging operating requirements on power turbines. Flexible load-leveling applications must accept more frequent and demanding start-stop cycles. Full transient analyses are too computationally expensive for real-time simulation across all operating regimes so monitoring relies on sparse physical measurements. Alone, these sparse data lack the fidelity for real-time prediction of a complex thermal field. A new hybrid methodology is proposed, coupling data across a range of fidelities to bridge the limitations in the individual analyses. Combining several fidelity methods in parallel, low-order models, corrected by real-time physical measurements, is calibrated with high-fidelity simulations. The multifaceted hybrid approach enables the real-time speed of low-order analysis at high resolution. This paper series develops the critical enabling features of the hybrid method. Real-time cross-fidelity data transition is fundamental to the hybrid methodology. A novel neural network auto-encoder method is presented, facilitating complex thermal profile reconstruction. Uncovering a compressed latent space, auto-encoders leverage underlying data features for fast simulation. Coupled with a dynamic mask and top-k selection, thermal probe placement can be automatically optimized. The auto-encoder method is demonstrated on a turbine casing, reconstructing over 500 h of transient operation in real-time, whilst reducing the required number of measurements by half.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference29 articles.

1. Energy Innovation: A Focus on Power Generation Data Capture and Analytics in a Competitive Market

2. Flexible and Economical Operation of Power Plants - 25 Years of Expertise,2012

3. World Energy Scenarios 2016;World Energy Council,2016

4. Steam Turbine Stress Control Using NARX Neural Network;Open Eng.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3