Optimization of a Centrifugal Impeller on Blade Thickness Distribution to Reduce Hydro-Induced Vibration

Author:

Qian Bo1,Wu Peng2,Huang Bin3,Zhang Kai2,Li Shiyang2,Wu Dazhuan1

Affiliation:

1. State Key Laboratory of Fluid Power Transmission and Control, College of Energy Engineering, Zhejiang University, Zheda Road 38, Zhiquan Building, Hangzhou, Zhejiang 310058, China

2. College of Energy Engineering, Zhejiang University, Zheda Road 38, Zhiquan Building, Hangzhou, Zhejiang 310058, China

3. Ocean College, Zhejiang University, Zheda Road 38, Zhiquan Building, Hangzhou, Zhejiang 310058, China

Abstract

Abstract The vibration performance of centrifugal impellers is important for pumps and hydraulic excitation is a key source of vibration. The complex internal secondary flow in the centrifugal impeller brings degradation on vibration performances. An attempt of optimization by controlling the thickness distribution of centrifugal impeller blade is given to repress the internal secondary flow and alleviating vibration. The usual method of modifying an impeller on vibration performance is applying splitter blades. In this study, an ordinarily designed impeller is improved by the optimization attempt and the optimized impeller (OPT) is compared with the prototype impeller (PRT) with traditional splitter blades. The vibration performances of the impellers, the PRT, the ordinary impeller (ODN), and the OPT, are investigated numerically and experimentally. Meanwhile, further study on the influence of the thickness distribution optimization on vibration is conducted. There is a relative velocity gradient from suction side (SS) to pressure side (PS) in impeller ODN, causing nonuniformity of energy distribution. By means of thickness distribution optimization, the impeller blade angle on the PS and SS along the blade-aligned streamwise location is, respectively, modified and therefore the flow field can be reordered. The energy transfer in impeller is also redistributed after the modification of blade thickness distribution. What is more, experimental research upon impeller PRT and impeller OPT is also complemented to support the computational fluid dynamics (CFD) results. The experimental results show that the hydraulic performance of the impellers basically agree with the CFD results and the vibration data also proves a better vibration performance of the OPT.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3