Design Features of the World’s First Commercial Concentrating Solar Power Plant Using the Particle Heating Receiver Concept

Author:

Al-Ansary Hany1,El-Leathy Abdelrahman1,Jeter Sheldon2,Golob Matthew2,Nguyen Clayton2,Djajadiwinata Eldwin1,Alaqel Shaker1,Saeed Rageh1,Abdel-Khalik Said2,Al-Suhaibani Zeyad1,Danish Syed1,Saleh Nader1,Al-Balawi Ahmed3,Al-Harthi Fahad3,Bashraheel Salem3,Gandayh Hatim3

Affiliation:

1. King Saud University, Riyadh, Saudi Arabia

2. Georgia Tech, Atlanta, GA

3. Saudi Electricity Company, Riyadh, Saudi Arabia

Abstract

Abstract Particle-based power tower systems are a promising technology that can allow operation of concentrating solar power (CSP) systems at temperatures higher than what today’s commercial molten salt systems can achieve, making them suitable for use in a variety of applications, including supercritical CO2 cycles, air Brayton cycles, and high-temperature process heat. In this concept, particles, instead of molten salt, are heated by the concentrated sunlight. In 2015, this concept was successfully tested at Sandia National Laboratories. In the mean time, an integrated system incorporating a particle heating receiver, a particle-to-air heat exchanger and a 100-kWe microturbine was designed, built, and tested at King Saud University in Riyadh, Saudi Arabia. The integrated system was run in 2018, and results from that test campaign were very promising, with temperatures of the particles leaving the receiver exceeding 600°C despite a number of challenges. The utility sponsoring the project is now planning to move forward with building a 1-MWe plant using the same concept, thereby moving closer to large-scale deployment, and making this facility the world’s first commercial concentrating solar power plant that uses the particle heating receiver concept. Moving from a 100-kWe scale to a 1-MWe scale requires modifications to the design of some components. The most likely plant location is the city of Duba in northwestern Saudi Arabia where the average daily total DNI is 7,170 Wh/m2 and an integrated solar combined cycle power plant exists on the premises. This paper discusses the design features of the main components of the new plant. Those features include a north field design, a 7.22-m2 single-sheet heliostat design, a cavity receiver to improve receiver efficiency by reducing radiative and convective losses, temperature-based particle flow regulation within the receiver, six hours of full-load thermal energy storage, with the tanks integrated into the tower structure and made of cost-effective masonry material, a shell-and-tube particle-to-air heat exchanger, a 45% efficiency recuperated intercooled gas turbine, and a high-temperature bucket elevator. The heliostat field was optimized using SolarPILOT. Results show that 1,302 heliostats are needed. The aperture area was found to be approximately 5.7 m2, while the total illuminated receiver surface area is about 16.8 m2. This design was found to be capable of achieving the particle temperature rise of 416°C, which is necessary to allow the turbine to rely entirely on the solar field to bring the temperature of air to the firing temperature of the turbine, thereby eliminating the need for fuel consumption except for back-up and for assistance at off-design conditions.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3