Type Synthesis for Remote Center of Motion Mechanisms Based on Coupled Motion of Two Degrees-of-Freedom

Author:

He Yucheng123,Zhang Peng13,Jin Haiyang13,Hu Ying123,Zhang Jianwei4

Affiliation:

1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China;

2. Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China;

3. The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China e-mail:

4. Department of Informatics, University of Hamburg, Vogt-Koelln-Strasse 30, Hamburg 22527, Germany e-mail:

Abstract

Robots play an increasingly important role in the development of minimally invasive surgery (MIS). In MIS assistant robot systems, the remote center of motion (RCM) mechanism is a key component, and is the primary choice as end-effector for such systems. In this paper, first, we propose a new type of synthesis method for RCM mechanisms, which is based on the coupled motion of two DOFs to obtain new virtual center of motion (VCM) mechanisms, and then, through different combinations and configurations of VCM mechanisms, a new family of RCM mechanisms is achieved. Second, one of the obtained RCM mechanisms, which is deemed to have potential application prospects in MIS assistant robot, is investigated in detail, and a prototype is designed and fabricated to verify its feasibility. Finally, preliminary experiments are carried out on the prototype; the results show that, compared with existing ones, the new RCM mechanism's volume can be adjusted according to its required workspace, and it will be more compact when the required workspace is small. It will be an applicable option of end-effector for an MIS assistant robot.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3