Comprehensive Product Platform Planning (CP3) Framework

Author:

Chowdhury Souma1,Messac Achille2,Khire Ritesh A3

Affiliation:

1. Department of Mechanical, Aerospace, and Nuclear Engineering, Multidisciplinary Design and Optimization Laboratory (MDOL), Rensselaer Polytechnic Institute, Troy, NY 12180

2. Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244

3. United Technologies Research Center (UTRC), East Hartford, CT 06118

Abstract

Development of a family of products that satisfies different market niches introduces significant challenges to today’s manufacturing industries—from development time to aftermarket services. A product family with a common platform paradigm offers a powerful solution to these daunting challenges. This paper presents a new approach, the Comprehensive Product Platform Planning (CP3) framework, to design optimal product platforms. The CP3 framework formulates a generalized mathematical model for the complex platform planning process. This model (i) is independent of the solution strategy, (ii) allows the formation of sub-families of products, (iii) allows the simultaneous identification of platform design variables and the determination of the corresponding variable values, and (iv) seeks to avoid traditional distinctions between modular and scalable product families from the optimization standpoint. The CP3 model yields a mixed integer nonlinear programming problem, which is carefully reformulated to allow for the application of continuous optimization using a novel Platform Segregating Mapping Function (PSMF). The PSMF can be employed using any standard global optimization methodology (hence not restrictive); particle swarm optimization has been used in this paper. A preliminary cost function is developed to represent the cost of a product family as a function of the number of products manufactured and the commonality among these products. The proposed CP3 framework is successfully implemented on a family of universal electric motors. Key observations are made regarding the sensitivity of the optimized product platform to the intended production volume.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference47 articles.

1. Technology Strategy in a Software Products Company;Meyer;J. Prod. Innovation Manage.

2. Planning Product Platforms;Robertson;Sloan Manage. Rev.

3. Product Platform and Product Family Design

4. Balancing Marketing and Manufacturing Objectives in Product Line Design;Michalek;ASME J. Mech. Des.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3