A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine

Author:

Assanis D. N.1,Filipi Z. S.1,Fiveland S. B.1,Syrimis M.1

Affiliation:

1. W. E. Lay Automotive Laboratory, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109-2133

Abstract

Available correlations for the ignition delay in pulsating, turbulent, two-phase, reacting mixtures found in a diesel engine often have limited predictive ability, especially under transient conditions. This study focuses on the development of an ignition delay correlation, based on engine data, which is suitable for predictions under both steady-state and transient conditions. Ignition delay measurements were taken on a heavy-duty diesel engine across the engine speed/load spectrum, under steady-state and transient operation. The dynamic start of injection was calculated by using a skip-fire technique to determine the dynamic needle lift pressure from a measured injection pressure profile. The dynamic start of combustion was determined from the second derivative of measured cylinder pressure. The inferred ignition delay measurements were correlated using a modified Arrhenius expression to account for variations in fuel/air composition during transients. The correlation has been compared against a number of available correlations under steady-state conditions. In addition, comparisons between measurements and predictions under transient conditions are made using the extended thermodynamic simulation framework of Assanis and Heywood. It is concluded that the proposed correlation provides better predictive capability under both steady-state and transient operation.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3