Improving Machined Surface Shape Prediction by Integrating Multi-Task Learning With Cutting Force Variation Modeling

Author:

Shao Chenhui1,Ren Jie2,Wang Hui2,Jin Jionghua (Judy)3,Hu S. Jack43

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 e-mail:

2. Department of Industrial and Manufacturing Engineering, Florida State University, Tallahassee, FL 32310 e-mail:

3. Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

4. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109;

Abstract

The shapes of machined surfaces play a critical role affecting powertrain performance, and therefore, it is necessary to characterize the shapes with high resolution. State-of-the-art approaches for surface shape characterization are mostly data-driven by interpolating and extrapolating the spatial data but its precision is limited by the density of measurements. This paper explores the new opportunity of improving surface shape prediction through considering the similarity of multiple similar manufacturing processes. It is a common scenario when the process of interest lacks sufficient data whereas rich data could be available from other similar-but-not-identical processes. It is reasonable to transfer the insights gained from other relevant processes into the surface shape prediction. This paper develops an engineering-guided multitask learning (EG-MTL) surface model by fusing surface cutting physics in engineering processes and the spatial data from a number of similar-but-not-identical processes. An iterative multitask Gaussian process learning algorithm is developed to learn the model parameters. Compared with the conventional multitask learning, the proposed method has the advantages in incorporating the insights on cutting force variation during machining and is potentially able to improve the prediction performance given limited measurement data. The methodology is demonstrated based on the data from real-world machining processes in an engine plant.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3