Numerical Simulation of the Effect of Rib Orientation on Fluid Flow and Heat Transfer in Rotating Serpentine Passages

Author:

Brahim Berrabah1

Affiliation:

1. Department of Mechanical Engineering, Materials and Reactive Systems Laboratory, Faculty of Technology, Djillali Liabes University, Sidi bel-abbes 22000, Algeria e-mail:

Abstract

The effect of rib orientation on flow and heat transfer in a four-pass square channel with skewed ribs in nonorthogonal-mode rotation was numerically studied by using omega-based Reynolds stress model (SMC−ω). Two cases are examined: in first case, the ribs are oriented with respect to the main flow direction at an angle of −45 deg in the first and third passage and at an angle of +45 deg in the second passage. The second case is identical to the first case with the ribs oriented at angle of +45 deg in the three passages. The calculations are carried out for a Reynolds number of 25,000, a rotation number of 0.24, and a density ratio of 0.13. The results show that the secondary flows induced by −45 deg ribs and by rotation combine partially destructively in the first and third passage of first case. In contrast, for second case, the secondary flows induced by +45 deg ribs and by rotation combine constructively in the first passage, while the flow is dominated by the vortices induced by +45 deg ribs in the third passage. In first case, a significant degradation of the heat transfer rate is observed on the coleading side of the first passage and on both cotrailing and coleading sides of the third as compared to second case. Consequently, the rib orientations at +45 deg are preferred in the radial outward flowing passage with an acceptable pressure drop. The numerical results are in agreement with the available experimental data.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference28 articles.

1. Rotating and Stationary Rectangular Cooling Passage Heat Transfer and Friction With Ribs, Pins, and Dimples,2002

2. Heat Transfer and Friction in Tubes With Repeated Rib Roughness;Int. J. Heat Mass Transfer,1971

3. Effects of Rotation on Coolant Passage Heat Transfer,1993

4. Heat Transfer in Rotating Serpentine Passage With Selected Model Orientations for Smooth or Skewed Trip Walls;ASME J. Turbomach.,1994

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3