Analysis of Large Deformation Wound Roll Models

Author:

Mollamahmutoglu C.1,Good J. K.2

Affiliation:

1. Research Associate

2. Professor Fellow ASME e-mail:  Oklahoma State University, Engineering North 218, Stillwater, OK 74078

Abstract

Almost all winding models incorporate the assumption of small linear deformations and strain in their development. These models treat the addition of a layer of web to a winding roll with linear analysis using linear strain theory. Very few winding models have been developed that incorporate large deformation theory although many models treat material nonlinearity. Tissue and nonwoven webs are highly extensible in-plane and highly compressible in the thickness dimension when compared to paper, plastic film, and metal foil webs. Winding models that embody large deformation theory should apply to all web materials. Such models may be wasteful in computation time for web materials such as paper, film, and foils where models that employ small deformation theory may provide sufficient accuracy. This would appear deterministic based upon the extensibility and compressibility of a web material, but the issue becomes more complex due to limitations in tension that can be exerted on the webs. Herein, a large deformation winding model will be developed. Results from this model will be used to benchmark results from other small and large deformation models, and with laboratory test data, a review of all results will be used to determine when or if large deformation winding models are required.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference10 articles.

1. Internal Pressures in a Wound Roll of Paper;Tappi J.,1966

2. Nonlinear Model for Wound Roll Stresses;Tappi J.,1987

3. Losses in Wound-On Tension in the Center Winding of Wound Rolls,1992

4. A Nonlinear Wound Roll Model Allowing for Large Deformation;ASME J. Appl. Mech.,1995

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3