Rapid Heating of Gas/Small Particle Mixture

Author:

Wang K. Y.1,Yuen W. W.2

Affiliation:

1. Solar Energy Research Institute, Golden, CO 80401

2. Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106

Abstract

The concept of using a mixture of particles and air as a medium to absorb radiative energy has been proposed for various applications. In this paper, carbon particles mixed with gas form a medium that absorbs radiation from sources such as concentrated solar energy. A single-particle, two-temperature model is used to study the transient temperature of the particle/gas mixture as it undergoes a constant pressure expansion process. The results indicate that for particles smaller than 1 μm in diameter, the surrounding air can be heated as quickly as the particles, while for particles larger than 1 mm in diameter, the air temperature stays relatively unchanged and the particles are heated to a very high temperature. The scattering albedos from the particles are also calculated, revealing that their contribution from scattering to the heating process is insignificant for particles with diameter less than 1 μm.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3