Temperature Measurement Using Infrared Spectral Band Emissions From H2O

Author:

Ellis Daniel J.1,Solovjov Vladimir P.1,Tree Dale R.2

Affiliation:

1. Department of Mechanical Engineering, Brigham Young University, 435 CTB, Brigham Young University, Provo, UT 84602 e-mail:

2. Mem. ASME Department of Mechanical Engineering, Brigham Young University, 435 CTB, Brigham Young University, Provo, UT 84602 e-mail:

Abstract

Currently, there is no satisfactory method for measuring the temperature of the gas phase of combustion products within a solid fuel flame. The industry standard, a suction pyrometer or aspirated thermocouple, is intrusive, spatially and temporally averaging, and difficult to use. In this work, a new method utilizing the spectral emission from water vapor is investigated through modeling and experimental measurements. The method employs the collection of infrared emission from water vapor over discrete wavelength bands and then uses the ratio of those emissions to infer temperature. This method was demonstrated in the products of a 150 kWth natural gas flame along a 0.75 m line of sight, averaged over 1 min. Results from this optical method were compared to those obtained using a suction pyrometer. Data were obtained at three fuel air equivalence ratios that produced products at three temperatures. The optical measurement produced gas temperatures approximately 3–4% higher than the suction pyrometer. The uncertainty of the optical measurements is dependent on the gas temperature being ±9% at 850 K and 4% or less above 1200 K. Broadband background emission assumed to be emitted from the reactor wall was also seen by the optical measurement and had to be removed before an accurate temperature could be measured. This complicated the gas measurement but also provides the means whereby both gas and solid emission can be measured simultaneously.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3