Effects of Virus Size and Cell Stiffness on Forces, Work, and Pressures Driving Membrane Invagination in a Receptor-Mediated Endocytosis

Author:

Gefen Amit1

Affiliation:

1. Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

A continuum model based on the contact mechanics theory was developed and used for evaluating virus indentation forces at the early stage of membrane invagination, as well as the work of the virus indentation forces and virus-cell contact pressures in a receptor-mediated endocytosis, depending on the virus size and virus/cell stiffnesses. The model indicated that early virus indentation forces are in the order of 1–10 pN and for a given extent of virus engulfment, they increase linearly with the elastic modulus of the host cell and also with the square of the virus radius. The work of invagination at the initial phase of virus endocytosis is in the order of tens of zeptojoules and peak virus-cell contact pressures at this stage are in the order of hundreds of Pascals to several kPa. For a given extent of virus engulfment, peak and average contact pressures increase linearly with the elastic modulus of the host cell but interestingly, they are negligibly affected by the virus size. The present model may be useful in the fields of cellular biomechanics, virology and nanodrug delivery to evaluate mechanical factors during the early phase of membrane invagination.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3