Real-Time Experimental Performance Assessment of a Photovoltaic Thermal System Cascaded With Flat Plate and Heat Pipe Evacuated Tube Collector

Author:

Kumar Laveet123,Hasanuzzaman M.4,Rahim N. A.4

Affiliation:

1. Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D UM, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia;

2. Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;

3. Department of Mechanical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan

4. Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D UM, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia

Abstract

Abstract In response to the global quest for a sustainable and environmentally friendly source of energy, most scientists’ discretion is solar energy, especially solar thermal. However, successful deployment of solar thermal technologies such as solar-assisted process heating (SAPH) systems in medium- to large-scale industries is still in quandary due to their inefficacy in raising ample temperatures. Cascaded SAPH system, which is essentially a series combination of two same or different types of thermal collectors, may provide a worthwhile solution to this problem. In this article, performance assessment and comparison of two cascaded SAPH systems have been presented: photovoltaic thermal (PVT) cascaded with flat-plate collector (PVT-FPC) and PVT coupled with heat pipe evacuated tube collector (PVT-HPETC). Simulation models have been presented for individual FPC, HPETC, and PVT as well as PVT cascaded with FPC and HPETC systems in TRNSYS and validated through outdoor experimentation. Both the first and the second laws of thermodynamics have been employed to reveal veritable performance of the systems. Results show that PVT-HPETC delivers better performance with 1625 W thermal energy, 81.59% energy efficiency, and 13.22% exergy efficiency. It cuts 1.37 kg of CO2 on an hourly basis. Cascaded systems can be effective in sustaining industrial process heat requirements.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3