Synthesizing Functional Mechanisms From a Link Soup1

Author:

Tavousi Pouya1,Kazerounian Kazem1,Ilies Horea1

Affiliation:

1. Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269-3139

Abstract

The synthesis of functional molecular linkages is constrained by difficulties in fabricating nanolinks of arbitrary shapes and sizes. Thus, classical mechanism synthesis methods, which assume the ability to manufacture any designed links, cannot provide a systematic process for assembling such linkages. We propose a new approach to building functional mechanisms with prescribed mobility by using only elements from a predefined “link soup.” First, we enumerate an exhaustive set of topologies, while employing divide-and-conquer algorithms to control the generation and elimination of redundant topologies. Then, we construct the linkage arrangements for each valid topology. Finally, we output a set of feasible geometries through a positional analysis step that minimizes the error associated with closure of the loops in the linkage while avoiding geometric interference. The proposed systematic approach outputs the ATLAS of candidate mechanisms, which can be further processed for downstream applications. The resulting synthesis procedure is the first of its kind that is capable of synthesizing functional linkages with prescribed mobility constructed from a soup of primitive entities.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference29 articles.

1. Kinematic Structure of Mechanisms Revisited;Mech. Mach. Theory,2003

2. Bunke, H., 2000, “Recent Developments in Graph Matching,” 15th International Conference on Pattern Recognition, IEEE, Barcelona, Spain, Sept. 3–7, Vol. 2, pp. 117–124.10.1109/ICPR.2000.906030

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3