Combustion Characteristics of HCCI in Motorcycle Engine

Author:

Wu Yuh-Yih1,Jang Ching-Tzan1,Chen Bo-Liang2

Affiliation:

1. Department of Vehicle Engineering, National Taipei University of Technology, Taipei, Taiwan 10608, R.O.C.

2. Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 31040, R.O.C.

Abstract

Homogeneous charge compression ignition (HCCI) is recognized as an advanced combustion system for internal combustion engines that reduces fuel consumption and exhaust emissions. This work studied a 150 cc air-cooled, four-stroke motorcycle engine employing HCCI combustion. The compression ratio was increased from 10.5 to 12.4 by modifying the cylinder head. Kerosene fuel was used without intake air heating and operated at various excess air ratios (λ), engine speeds, and exhaust gas recirculation (EGR) rates. Combustion characteristics and emissions on the target engine were measured. It was found that keeping the cylinder head temperature at around 120–130°C is important for conducting a stable experiment. Two-stage ignition was observed from the heat release rate curve, which was calculated from cylinder pressure. Higher λ or EGR causes lower peak pressure, lower maximum rate of pressure rise (MRPR), and higher emission of CO. However, EGR is better than λ for decreasing the peak pressure and MRPR without deteriorating the engine output. Advancing the timing of peak pressure causes high peak pressure, and hence increases MRPR. The timing of peak pressure around 10–15 degree of crank angle after top dead center indicates a good appearance for low MRPR.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3