Affiliation:
1. Department of Mechanical Engineering, University of Miami, Coral Gables, FL 33124
2. Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA 93940
Abstract
Heat transfer measurements were made during nucleate boiling of R-113 from a bundle of 15 electrically heated, copper TURBO-B tubes arranged in an equilateral triangular pitch, designed to simulate a portion of a flooded evaporator. Five of the tubes that were oriented in a vertical array on the centerline of the bundle were each instrumented with six wall thermocouples. For increasing heat flux, the incipient boiling wall superheat of upper tubes decreased as lower tubes were activated. In the boiling region at low heat fluxes (≈ 1 kW/m2), the average bundle heat transfer coefficient was 4.6 times that obtained for a smooth tube bundle (under identical conditions) and 1.6 times greater than that obtained for a single TURBO-B tube; a similar bundle factor has been reported for a smooth tube bundle. At high heat fluxes (100 kW/m2), the average bundle heat transfer coefficient was 3.6 times that of a smooth tube bundle. Furthermore, there was still a significant bundle factor (1.22), contrary to a smooth tube bundle, where all effect of lower tubes was eliminated at high heat fluxes.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献