Transient Cooling of Hot Porous and Nonporous Ceramic Solids by Droplet Evaporation

Author:

Abu-Zaid M.1,Atreya A.1

Affiliation:

1. Combustion and Heat Transfer Laboratory, Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109-2125

Abstract

This paper presents the results of an experimental investigation into transient cooling of low-thermal-conductivity porous and nonporous ceramic solids by individual water droplets. The initial surface temperature (Ts) of both solids ranged from 75 to 200°C. Both solids were instrumented with several surface and in-depth thermocouples and had the same thermal properties. This enabled investigation into the similarities and differences in the thermal behavior of porous and nonporous solids during droplet evaporation. The measured and theoretical contact temperatures, for both solids, were found to be in good agreement until they became equal to the boiling point of water (which occurs at an initial solid surface temperature of 164°C). Further increase in the initial solid surface temperature did not change the measured contact temperature. Instead, it became roughly constant at a value slightly greater than the boiling point of water. During the droplet evaporation process, surface and in-depth temperatures for the nonporous solid remain nearly constant, whereas for the porous solid there was a continuous decrease in these temperatures. A thermocouple in the porous matrix at the same location as that of the nonporous matrix cools faster under identical conditions, indicating an energy sink in the vicinity of the thermocouple. Also, evaporation time for the nonporous solid was found to be larger than that of the porous solid for the same droplet size and under the same conditions. These observations confirm that there is both in-depth and lateral penetration of water in the porous solid. The transient temperature measurements were used to determine the following quantities: (i) the recovery time (time required by the surface to recover to its initial temperature), and (ii) the size of surface and in-depth zones affected by the droplet. The instantaneous evaporation rate, and the instantaneous average evaporative heat flux for the nonporous solid, were also determined from video measurements of the droplet diameter on the solid surface and the transient temperature measurements. It was found that the average evaporative heat flux is higher for smaller droplets because of their smaller thickness on the hot surface.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single droplet impingement of urea water solution on heated porous surfaces;International Journal of Heat and Mass Transfer;2021-12

2. Cooling of porous metal surfaces by droplet impact;International Journal of Heat and Mass Transfer;2020-05

3. Control of a ceramic tiles cooling process based on water spraying;Journal of Process Control;2009-07

4. Dropwise cooling: Experimental tests by infrared thermography and numerical simulations;Applied Thermal Engineering;2009-05

5. Experimental tests of dropwise cooling on infrared-transparent media;Experimental Thermal and Fluid Science;2007-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3