Affiliation:
1. University of Nottingham, Nottingham, UK
2. Siemens Industrial Turbomachinery, Lincoln, UK
Abstract
In this paper, the flow and heat transfer characteristics of two lines of staggered or inline round jets impinging on a flat plate are numerically analyzed using the CFD commercial code FLUENT. Firstly, the relative performance of seven versions of turbulence models, including the standard k-ε model, the renormalization group k-ε model, the realizable k-ε model, the standard k-ω model, the Shear-Stress Transport k-ω model, the Reynolds stress model and the Large Eddy Simulation model, for numerically predicting single jet impingement heat transfer is investigated by comparing the numerical results with available benchmark experimental data. As a result, the Shear-Stress Transport k-ω model is recommended as the best compromise between the computational cost and accuracy. Using the Shear-Stress Transport k-ω model, the impingement flow and heat transfer under multi-jets with different jet distributions and attack angles are simulated and studied. The effect of hole distribution and angle of attack, etc. on the heat transfer coefficient of the target plate are examined.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献