Dynamic Forced Response of a Rotor-Hybrid Gas Bearing System Due to Intermittent Shocks

Author:

San Andre´s Luis1,Ryu Keun1

Affiliation:

1. Texas A&M University, College Station, TX

Abstract

Gas bearings in microturbomachinery (MTM) offer significant system level benefits, such as improved fuel efficiency, reduction in weight and number of components, extending life cycle and maintenance intervals, and reducing NOX emissions with a lower CO2 footprint. Emerging opportunities for gas bearings applications range from automotive turbochargers to engines for business jet aircraft, for example. Gas bearings, because of the inherently low gas viscosity, have low damping relative to oil-lubricated bearings and are prone to wear during rotor start-up and shut down procedures. The lack of damping brings concerns about rotor-gas bearing system robustness and endurance to tolerate shock induced loads, sudden while landing in jet engines, or intermittent in vehicles while moving across a rough terrain, for example. The paper demonstrates the reliability of a hybrid gas bearing system from rotor vibration measurements induced by sporadic shock loads acting on the base of a test rig and while the rotor is coasting down from a top speed of 60 krpm (1000 Hz). In the tests, (1) an electromagnetic pusher delivers impacts to the rig base, or (2) the whole rig is manually tilted and dropped. The test rig consists of a rigid rotor, 0.825 kg and 28.6 mm in diameter, supported on two flexure pivot tilting pad type, hybrid gas bearings, each with four pads and 60% pivot offset and 0.6 mm feeding holes. The bearings are supplied with feed pressures of 2.36, 3.72, and 5.08 bar (ab). Intermittent shocks, up to 30 g pk-pk and exciting a broad frequency range to 400 Hz, produce a remarkable momentary increase of the overall rotor response amplitude, up to 50 μm (pk-pk). The shocks readily excite the fundamental natural frequency of the rotor-bearing system (150–200 Hz), and on occasion the natural frequency (40 Hz) of the whole test rig. For operation at rotor speeds above the system critical speed, the rotor synchronous response is isolated; with transient motions induced by a shock, subsynchronous in whirl frequency, quickly disappearing. Full recovery takes place in ∼0.10 second. The measurements demonstrate that the hybrid gas bearings have enough damping to rapidly attenuate rotor transient motions and to dissipate the energy induced from intermittent shocks. Note that the shocks acted while the rotor traversed its critical speeds. The reliability of engineered gas bearings to forced transient events is no longer in question.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3