A Numerical and Experimental Performance Comparison of an 86 MM Radial and Back Swept Turbine

Author:

Barr Liam1,Spence Stephen1,Thornhill David1,Eynon Paul2

Affiliation:

1. Queen’s University of Belfast, Belfast, UK

2. Cummins Turbo Technologies, Huddersfield, UK

Abstract

This report details the numerical and experimental investigation of the performance characteristics of a conventional radial turbine compared with a new back swept design for the same application. The blade geometry of an existing turbine from a turbocharger was used as a baseline. A new back swept blade was subsequently designed for the rotor, which departed from the conventional radial inlet blade angle to incorporate a 25° inlet blade angle. A comparative numerical analysis between the two geometries is presented. Results show that the 25° back swept blade offers significant increases in efficiency while operating at lower than optimum velocity ratios (U/C). Improvements in efficiency at off-design conditions could significantly improve turbocharger performance since the turbine typically experiences lower than optimum velocity ratios while accelerating during engine transients. A commercial CFD code was used to construct single passage steady state numerical models. The numerical predictions show off-design performance gains of 2% can be achieved, while maintaining design point efficiency. A finite element stress analysis was conducted to show that the nonradial inlet blade angle could be implemented without exceeding the acceptable stress levels for the rotor. A modal analysis was also carried out in order to identify the natural blade frequencies, showing that these were not significantly changed by the implementation of backswept blading. A prototype backswept rotor was produced and tested in a direct comparison with the baseline rotor geometry. Experimental performance results showed strong correlations with those obtained numerically, and verified the predicted performance gains at off-deign velocity ratios. This numerical and experimental study has shown that it is feasible from both an aerodynamic and structural point of view to improve the performance characteristic of a radial turbine at lower than optimum velocity ratios through the implementation of back swept blading.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3