Measurement of Detailed Heat Transfer Coefficient and Film Cooling Effectiveness Distributions Using PSP and TSP

Author:

Russin Rebekah A.1,Alfred Daniel1,Wright Lesley M.2

Affiliation:

1. University of Arizona, Tucson, AZ

2. Baylor University, Waco, TX

Abstract

This paper presents the development of a novel experimental technique utilizing both temperature and pressure sensitive paints (TSP and PSP). Through the combination of these paints, both detailed heat transfer coefficient and film cooling effectiveness distributions can be obtained from two short experiments. Using a mass transfer analogy, PSP has proven to be a powerful technique for measurement of film cooling effectiveness. This benefit is exploited to obtain detailed film cooling effectiveness distributions from a steady state flow experiment. This measured film cooling effectiveness is combined with transient temperature distributions obtained from a transient TSP experiment to produce detailed heat transfer coefficient distributions. Optical filters are used to differentiate the light emission from the florescent molecules comprising the PSP and TSP. Although two separate tests are needed to obtain the heat transfer coefficient distributions, the two tests can be performed in succession to minimize setup time and variability. The detailed film effectiveness and heat transfer enhancement ratios have been obtained for a generic, inclined angle (θ = 35°) hole geometry on a flat plate. Distinctive flow features over a wide range of blowing ratios have been captured with the proposed technique. In addition, the measured results have compared favorably to previous studies (both qualitatively and quantitatively), thus substantiating the use of the combined PSP / TSP technique for experimental investigations of three temperature mixing problems.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3