Micro Gas Turbine Real-Time Modeling: Test Rig Verification

Author:

Ghigliazza Francesco1,Traverso Alberto1,Pascenti Matteo1,Massardo Aristide F.1

Affiliation:

1. University of Genoa, Genoa, Italy

Abstract

This paper reports on the latest application of a generic time-dependent real-time simulation tool, originally developed for fuel cell gas turbine hybrid systems, and now applied to an actual micro gas turbine test rig. Real-time modeling is a recognized approach for monitoring advanced systems and improving control capabilities: applications of real-time models are commonly used in the automotive and aircraft fields. The overall objective is improving of calculation time in existing time-dependent simulation models, while retaining acceptable accuracy of results. The real-time modeling approach already applied to fuel cell gas turbine systems has here been validated against the experimental data from the micro gas turbine Turbec T100 test rig in Savona, Italy. The real-time model of the microturbine recuperator has been newly developed to fit such an application. Two representative transient operations have been selected for verification: the heating and cooling phases of the connected volume. The results already show an acceptable agreement with measurements, and they have contributed to a better insight into performance prediction for the entire plant.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real Time Micro Gas Turbines Performance Assessment Tool: Comprehensive Transient Behavior Prediction With Computationally Effective Techniques;Journal of Engineering for Gas Turbines and Power;2022-12-05

2. Towards real time transient mGT performance assessment: effective prediction using accurate component modelling techniques;Journal of the Global Power and Propulsion Society;2022-07-07

3. Modelling and performance analysis of a recuperated gas turbine with low-Btu fuel;Applied Thermal Engineering;2021-11

4. Gas Turbine Simulation Taking into Account Dynamics of Gas Capacities;Gas Turbines - Control, Diagnostics, Simulation, and Measurements [Working Title];2019-12-28

5. A Micro Gas Turbine Based Test Rig for Educational Purposes;Journal of Engineering for Gas Turbines and Power;2009-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3