Effect of Static/Dynamic Coupling on the Forced Response of Turbine Bladed Disks With Underplatform Dampers

Author:

Firrone Christian M.1,Zucca Stefano1,Gola Muzio1

Affiliation:

1. Politecnico di Torino, Turin, Italy

Abstract

Friction contacts are often used in turbomachinery design as passive damping systems. In particular underplatform dampers are mechanical devices used to decrease the vibration amplitudes of bladed disks. Numerical codes are used to optimize during design the underplatform damper parameters in order to limit the resonant stress level of the blades. In such codes the contact model plays the most relevant role in the calculation of the dissipated energy at friction interfaces. One of the most important contact parameters is the static normal load acting at the contact, since its value strongly affects the area of the hysteresis loop of the tangential force and therefore the amount of dissipation. A common procedure to estimate the static normal loads acting on underplatform dampers consists in decoupling the static and the dynamic balance of the damper. A preliminary static analysis of the contact is performed in order to get the static contact/gap status to use in the calculation, assuming that it does not change when vibration occurs. In this paper a novel approach is proposed. The static and the dynamic displacements of the system (bladed disk + underplatform dampers) are coupled together during the forced response calculation. Static loads acting at the contacts follow from static displacements and no preliminary static analysis of the system is necessary. The proposed method is applied to a numerical test case representing a simplified bladed disk with underplatform dampers. Results are compared with those obtained with the classical approach.

Publisher

ASMEDC

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3