Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions

Author:

Hofer Toma´sˇ1,Arts Tony1

Affiliation:

1. von Ka´rma´n Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium

Abstract

Modern high pressure turbines operate at high velocity and high temperature conditions. The gap existing above a turbine rotor blade is responsible for an undesirable tip leakage flow. It is a source of high aerodynamic losses and high heat transfer rates. A better understanding of the tip flow behaviour is needed to provide a more efficient cooling design in this region. The objective of this paper is to investigate the tip leakage flow for a blade with two different squealer tips and film-cooling applied on the pressure side and through tip dust holes in a non-rotating, linear cascade arrangement. The experiments were performed in the VKI Light Piston Compression Tube facility, CT-2. The tip gap flow was investigated by oil flow visualisations and by wall static and total pressure measurements. Two geometries were tested — a full squealer and a partial suction side squealer. The measurements were performed in the blade tip region, including the squealer rim and on the corresponding end-wall for engine representative values of outlet Reynolds and Mach numbers. The main flow structures in the cavity were put in evidence. Positive influence of the coolant on the tip gap flow and on the aerodynamic losses was found for the full squealer tip case: increasing the coolant mass-flow increased the tip gap flow resistance. The flow through the clearance therefore slows down, the tip gap mass-flow and the heat transfer respectively decreases. No such effect of cooling was found in the case of the partial suction side squealer geometry. The absence of a pressure side squealer rim resulted in a totally different tip gap flow topology, indifferent to cooling. The influence of cooling on the overall mass-weighted thermodynamic loss coefficient, which takes into account the different energies of the mainstream and coolant flows was found marginal for both geometries. Finally the overall loss coefficient was found to be higher for the partial suction side squealer tip than for the full squealer tip.

Publisher

ASMEDC

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3