Biaxial Failure Behavior of Bovine Tibial Trabecular Bone

Author:

Niebur Glen L.1,Feldstein Michael J.2,Keaveny Tony M.2

Affiliation:

1. Department of Aerospace and Mechanical Engineering, The University of Notre Dame, Notre Dame, IN 46556

2. Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, The University of California, Berkeley, CA 94720

Abstract

Multiaxial failure properties of trabecular bone are important for modeling of whole bone fracture and can provide insight into structure-function relationships. There is currently no consensus on the most appropriate form of multiaxial yield criterion for trabecular bone. Using experimentally validated, high-resolution, non-linear finite element models, biaxial plain strain boundary conditions were applied to seven bovine tibial specimens. The dependence of multiaxial yield properties on volume fraction was investigated to quantify the interspecimen heterogeneity in yield stresses and strains. Two specimens were further analyzed to determine the yield properties for a wide range of biaxial strain loading conditions. The locations and quantities of tissue level yielding were compared for on-axis, transverse, and biaxial apparent level yielding to elucidate the micromechanical failure mechanisms. As reported for uniaxial loading of trabecular bone, the yield strains in multiaxial loading did not depend on volume fraction, whereas the yield stresses did. Micromechanical analysis indicated that the failure mechanisms in the on-axis and transverse loading directions were mostly independent. Consistent with this, the biaxial yield properties were best described by independent curves for on-axis and transverse loading. These findings establish that the multiaxial failure of trabecular bone is predominantly governed by the strain along the loading direction, requiring separate analytical expressions for each orthotropic axis to capture the apparent level yield behavior.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3