Measurements of the Flow in an Idealized Turbine Tip Gap

Author:

Sjolander S. A.1,Cao D.1

Affiliation:

1. Carleton University, Ottawa, ON, Canada

Abstract

To gain further insights into the details of the tip-gap flow in axial turbines, a test section has been constructed with a single, idealized, large-scale tip gap. The single “blade” forms a circular arc with 90 degrees of turning and has a constant thickness of 78 mm. For a plain, flat tip four clearances have been examined, varying from 0.292 to 0.667 of the blade thickness (corresponding to physical gap heights of 22.8 to 52.1 mm). The large proportions made it possible to obtain very detailed measurements inside the gap. The paper discusses the structure of the gap flow in some detail. One new feature, involving multiple vortices on the tip, probably helps to explain the “burnout” which sometimes occurs on turbine tips near the pressure side. Quantitative results are presented for the static pressures, total pressures and velocity vectors through the gap. In addition, contraction coefficients for the flow at the separation bubble, discharge coefficients for the gap, and the gap losses have been extracted for comparison with the assumptions made in recent gap-flow models.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3