Measurement and Prediction of Heat Transfer From Compressor Discs With a Radial Inflow of Cooling Air

Author:

Farthing P. R.1,Long C. A.1,Rogers R. H.1

Affiliation:

1. University of Sussex, Brighton, UK

Abstract

An integral theory is used to model the flow, and predict heat transfer rates, for corotating compressor discs with a superposed radial inflow of air. Measurements of heat transfer are also made, both in an experimental rig and in an engine. The flow structure comprises source and sink regions, Ekman-type layers and an inviscid central core. Entrainment occurs in the source region, the fluid being distributed into the two nonentraining Ekman-type layers. Fluid leaves the cavity via the sink region. The integral model is validated against the experimental data, although there are some uncertainties in modelling the exact thermal conditions of the experiment. The magnitude of the Nusselt numbers is affected by the rotational Reynolds number and dimensionless flowrate; the maximum value of Nu is found to occur near the edge of the source region. The heat transfer measurements using the engine data show acceptable agreement with theory and experiment. This is very encouraging considering the large levels of uncertainty in the engine data.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat Transfer Prediction From Large Eddy Simulation of a Rotating Cavity With Radial Inflow;Journal of Engineering for Gas Turbines and Power;2019-10-24

2. Coupled Aerothermal Modeling of a Rotating Cavity With Radial Inflow;Journal of Engineering for Gas Turbines and Power;2015-10-06

3. Measurement and Computation of Heat Transfer in High-Pressure Compressor Drum Geometries With Axial Throughflow;Journal of Turbomachinery;1997-01-01

4. Discs and Drums: The Thermo-Fluid Dynamics of Rotating Surfaces;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;1993-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3