Multi-Fidelity Gaussian Process Surrogate Modeling of Pediatric Tissue Expansion

Author:

Han Tianhong1,Ahmed Kaleem S.2,Gosain Arun K.3,Tepole Adrian Buganza1,Lee Taeksang4

Affiliation:

1. Department of Mechanical Engineering, Purdue University , West Lafayette, IN 47907

2. McCormick School of Engineering, Northwestern University , Chicago, IL 60611

3. Surgery (Pediatric Surgery), Plastic Surgery, Lurie Children’s Hospital, Northwestern University, Feinberg School of Medicine , Chicago, IL 60611

4. Department of Mechanical Engineering, Myongji University , Yongin 17058, South Korea

Abstract

Abstract Growth of skin in response to stretch is the basis for tissue expansion (TE), a procedure to gain new skin area for reconstruction of large defects. Unfortunately, complications and suboptimal outcomes persist because TE is planned and executed based on physician's experience and trial and error instead of predictive quantitative tools. Recently, we calibrated computational models of TE to a porcine animal model of tissue expansion, showing that skin growth is proportional to stretch with a characteristic time constant. Here, we use our calibrated model to predict skin growth in cases of pediatric reconstruction. Available from the clinical setting are the expander shapes and inflation protocols. We create low fidelity semi-analytical models and finite element models for each of the clinical cases. To account for uncertainty in the response expected from translating the models from the animal experiments to the pediatric population, we create multifidelity Gaussian process surrogates to propagate uncertainty in the mechanical properties and the biological response. Predictions with uncertainty for the clinical setting are essential to bridge our knowledge from the large animal experiments to guide and improve the treatment of pediatric patients. Future calibration of the model with patient-specific data—such as estimation of mechanical properties and area growth in the operating room—will change the standard for planning and execution of TE protocols.

Funder

Myongji University

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3