Hydrogen Thermal-Powered Aircraft Combustion and Propulsion System

Author:

Palies Paul P.1

Affiliation:

1. Mechanical, Aeronautical, and Biomedical Engineering Department, The C-PARC at The University of Tennessee Space Institute , 411 B.H. Goethert Parkway, Tullahoma, TN 37388

Abstract

Abstract This article presents an assessment study of the propulsion system, the fuel distribution system, and the injector/combustor technologies enabling to eliminate of CO2 emissions in aviation. In addition, the discussion is on NOx reduction methods and mitigation technologies, and a concept to fully eliminate NOx is proposed. To design and deploy an advanced thermal-powered aircraft based on liquid hydrogen fuel in future, it is important to provide key estimates that support feasibility of the methods and technologies developed and explored in this paper. This is conducted here for a typical narrow-body aircraft that will be retrofitted and considered. Once the design space and performance requirements are introduced, a compact low emission combustor including all components is discussed to operate with hydrogen swirled combustion to equip the turbofan engines of this conceptualized aircraft. The fuel tank is not only discussed with respect to the difference in power per unit volume and per unit mass between sustainable aviation fuel (SAF) and H2 but also taking into account the Breguet range. This demonstrates that the volume of the tanks does not need to be four times more voluminous between H2 and SAF. The paper also presents a thermodynamics performance analysis for SAF fuel that is used to retrofit the engine with hydrogen fuel keeping inlet and outlet combustor stagnation temperatures equivalent. A method to derive the required flow split for future premixed combustor is described and conserve identical thermal power between SAF and H2 fuels. Flame stabilization critical challenges are also introduced.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference26 articles.

1. Accord de Paris;UN,2015

2. CO2 Emissions From Commercial Aviation: 2013, 2018, and 2019,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3