Genetic Planning Method and its Application to Planetary Exploration

Author:

Farritor Shane1,Dubowsky Steven2

Affiliation:

1. Department of Mechanical Engineering, University of Nebraska, Lincoln, NE 68588

2. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

This paper describes a genetic algorithm planning method for autonomous robots in unstructured environments. It presents the approach and demonstrates its application to a laboratory planetary exploration problem. The method represents activities of the robot with discrete actions, or action modules. The action modules are assembled into an action plan with a Genetic Algorithm (GA). A successful plan allows the robot to complete the task without violating any physical constraints. Plans are developed that explicitly consider constraints such as power, actuator saturation, wheel slip, and vehicle stability. These are verified using analytical models of the robot and environment. The methodology is described in the context of planetary exploration similar to the NASA Mars Pathfinder mission. More aggressive missions are planned where rovers will explore scientifically important areas that are difficult to reach (e.g., ravines, craters, dry riverbeds, and steep cliffs). The proposed approach is designed for such areas.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference30 articles.

1. Golombek, M., Cook, R., Economou, T., Folkner, W., Haldemann, A., Kallemeyn, P., Knudsen, J., Manning, R., Moore, H., Parker, T., Rieder, R., Schofield, J., Smith, P., and Vaughan, R., 1997, “Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions,” Science, 278(5344), p. 17431743.

2. Hayati, S., et al., 1997, “The Rocky 7 Rover: A Mars Sciencecraft Prototype,” IEEE International Conference on Robotics and Automation, pp. 2458–2464.

3. Brooks, R. , 1986, “A Robust Layered Control System for a Mobile Robot,” IEEE Trans. Rob. Autom., 2(1), pp. 14–23.

4. Gat, E., Desai, R., Ivlev, R., Loch, J., and Miller, D., 1994, “Behavior Control of Robotic Exploration of Planetary Surfaces,” IEEE Trans. Rob. Autom., 10(4), pp. 490–503.

5. Borenstein, J., and Koren, Y., 1991, “The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots,” IEEE Trans. Rob. Autom., 7(3) pp. 278–288.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3