Affiliation:
1. Dynamical Systems Laboratory, Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 e-mail:
Abstract
This paper performs a theoretical and experimental investigation of the natural frequency and stability of rocking semicircular, parabolic, and semi-elliptical disks. Horace Lamb's method for deriving the natural frequency of an arbitrary rocking disk is applied to three shapes with semicircular, parabolic, and semi-elliptical cross sections, respectively. For the case of the semicircular disk, the system's equation of motion is derived to verify Lamb's method. Additionally, the rocking semicircular disk is found to always have one stable equilibrium position. For the cases of the parabolic and semi-elliptical disks, this investigation reveals a supercritical pitchfork bifurcation for changes in a single geometric parameter which indicates that the systems can exhibit bistable behavior. Comparisons between experimental validation and theory show good agreement.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献