Affiliation:
1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Abstract
Abstract
This paper investigates the near-resonance response to exogenous excitation of a class of networks of coupled linear and nonlinear oscillators with emphasis on the dependence on network topology, distribution of nonlinearities, and damping ratios. The analysis shows a qualitative transition between the behaviors associated with the extreme cases of all linear and all nonlinear oscillators, respectively, even allowing for such a transition under continuous variations in the damping ratios but for fixed topology. Theoretical predictions for arbitrary members of the network class using the multiple-scales perturbation method are validated against numerical results obtained using parameter continuation techniques. The latter include the tracking of families of quasi-periodic invariant tori emanating from saddle-node and Hopf bifurcations of periodic orbits. In networks in the class of interest with special topology, 1:1 and 1:3 internal resonances couple modes of oscillation, and the conditions to suppress the influence of these resonances are explored.
Funder
National Science Foundation
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献