Topology-Dependent Excitation Response of Networks of Linear and Nonlinear Oscillators

Author:

Mao Yu1,Dankowicz Harry1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

Abstract This paper investigates the near-resonance response to exogenous excitation of a class of networks of coupled linear and nonlinear oscillators with emphasis on the dependence on network topology, distribution of nonlinearities, and damping ratios. The analysis shows a qualitative transition between the behaviors associated with the extreme cases of all linear and all nonlinear oscillators, respectively, even allowing for such a transition under continuous variations in the damping ratios but for fixed topology. Theoretical predictions for arbitrary members of the network class using the multiple-scales perturbation method are validated against numerical results obtained using parameter continuation techniques. The latter include the tracking of families of quasi-periodic invariant tori emanating from saddle-node and Hopf bifurcations of periodic orbits. In networks in the class of interest with special topology, 1:1 and 1:3 internal resonances couple modes of oscillation, and the conditions to suppress the influence of these resonances are explored.

Funder

National Science Foundation

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference28 articles.

1. Exploring Complex Networks;Nature,2001

2. Statistical Mechanics of Complex Networks;Rev. Mod. Phys.,2002

3. Complex Networks: Structure and Dynamics;Phys. Rep.,2006

4. Synchronization in Complex Networks;Phys. Rep.,2008

5. Phase Reduction and Synchronization of a Network of Coupled Dynamical Elements Exhibiting Collective Oscillations;Chaos: An Interdiscip. J. Nonlinear Sci.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3