Measurements of Loading and Tip Vortex Due to High-Reynolds Number Flow Over a Rigid Lifting Surface

Author:

Krane Michael H.1,Meyer Richard S.1,Weldon Matthew J.1,Elbing Brian1,DeVilbiss David W.1

Affiliation:

1. Applied Research Laboratory, Penn State University, State College, PA 16804

Abstract

An experimental study of high-Reynolds number flow over a rigid hydrofoil (David Taylor model basin (DTMB) modified NACA66-009, rectangular planform, aspect ratio (AR = 4, square tip) is presented. The measurements were performed in the Garfield Thomas Water Tunnel at Applied Research Laboratory (ARL) Penn State. Load measurements were performed at ReC = 1.5 × 106 and 2.4 × 106, for angles of attack between −8 deg and +8 deg. Measurements of three components of velocity were performed using stereo particle image velocimetry (SPIV) on a cross-flow plane to resolve the tip vortex flow 0.42 chord lengths downstream of the trailing edge, for four angles of attack ranging from 0.5 deg to 3.5 deg. Nondimensional tip vortex circulation varied weakly with angle of attack. Vortex location in the plane of measurement, relative to the trailing edge, was unchanged for the ranges studied, though the vortex core grew in size with angle of attack. These results are consistent with the finding that the net lift force acts between 45% and 46% span, measured from the root, in that any angle of attack variations in tip vortex strength or radius result in minimal changes in spanwise loading distribution.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3