Investigation of the Beltline Welding Seam and Base Metal of the Greifswald WWER-440 Unit 1 Reactor Pressure Vessel

Author:

Schuhknecht Jan1,Viehrig Hans-Werner1,Rindelhardt Udo1

Affiliation:

1. Forschungszentrum Dresden-Rossendorf (FZD), PF 510119, D-01324 Dresden, Germany

Abstract

Abstract The investigation of reactor pressure vessel (RPV) materials from decommissioned nuclear power plants (NPPs) offers the unique opportunity to scrutinize the irradiation behavior under real conditions. Material samples taken from the RPV wall enable a comprehensive material characterization. The paper describes the investigation of trepans taken from the decommissioned WWER-440 first generation RPVs of the Greifswald NPP. Those RPVs represent different material conditions such as irradiated (I); irradiated and recovery annealed (IA); and irradiated, recovery annealed, and re-irradiated (IAI). The working program is focused on the characterization of the RPV steels (base and weld metal) through the RPV wall. The key part of the testing is aimed at the determination of the reference temperature T0 following the American Society for Testing of Materials (ASTM) Test Standard E1921–08 to determine the fracture toughness of the RPV steel in different thickness locations. In a first step, the trepans taken from the RPV Greifswald unit 1 containing the X-butt multilayer submerged welding seam and from base metal ring 0.3.1 both located in the beltline region were investigated. Unit 1 represents the IAI condition. It is shown that the master curve (MC) approach as adopted in ASTM E1921 is applicable to the investigated original WWER-440 weld metal. The evaluated T0 varies through the thickness of the welding seam. The lowest T0 value was measured in the root region of the welding seam representing a uniform fine grain ferritic structure. Beyond the welding root T0 shows a wavelike behavior. The highest T0 of the weld seam was not measured at the inner wall surface. This is important for the assessment of ductile-to-brittle temperatures measured on subsize Charpy specimens made of weld metal compact samples removed from the inner RPV wall. Our findings imply that these samples do not represent the most conservative condition. Nevertheless, the Charpy-V transition temperature TT41J estimated with results of subsize specimens after the recovery annealing was confirmed by the testing of standard Charpy-V-notch specimens. The evaluated TT41J shows a better accordance with the irradiation fluence along the wall thickness than the master curve reference temperature T0. The evaluated T0 from the trepan of base metal ring 0.3.1 varies through the thickness of the RPV wall. The KJc values generally follow the course of the MC, although the scatter is large. The re-embrittlement during two campaign operations can be assumed to be low for the weld and base metal.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference8 articles.

1. Pressure Vessel Investigations of the Former Greifswald NPP: Fluence Calculations and Nb Based Fluence Measurements;Konheiser

2. Böhmer, B., Böhmert, J., Müller, G., Rindelhardt, U., and Utke, H., 1999, “Embrittlement Studies of the Reactor Pressure Vessel of the Greifswald −440 Reactors,” Technical Report No. NUCRUS96601.

3. Guidelines for Prediction of Irradiation Embrittlement of Operating WWER-440 Reactor Pressure Vessels;Brumovský

4. ASTM E399: Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials;ASTM

5. 2003, DIN EN 10045-1 (1991): Metallic Materials: Charpy Impact Test; Part 1, DIN-Taschenbuch 19, Werkstoffprüfnormen für metallische Werkstoffe 1, Beut Verlag GmbH.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3