Static and Dynamic Response of Beams on Nonlinear Viscoelastic Unilateral Foundations: A Multimode Approach

Author:

Bhattiprolu Udbhau1,Davies Patricia2,Bajaj Anil K.2

Affiliation:

1. Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, 140 South Martin Jischke Drive, West Lafayette, IN 47907 e-mail:

2. Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, 140 South Martin Jischke Drive, West Lafayette, IN 47907

Abstract

Nonlinear viscoelastic behavior is a characteristic of many engineering materials including flexible polyurethane foam, yet it is difficult to develop dynamic models of systems that include these materials and are able to predict system behavior over a wide range of excitations. This research is focused on a specific example system in the form of a pinned-pinned beam interacting with a viscoelastic foundation. Two cases are considered: (1) the beam and the foundation are glued so that they are always in contact and the foundation can undergo both tension and compression, and (2) the beam is not glued to the foundation and the foundation reacts only in compression so that the contact region changes with beam motion. Static as well as dynamic transverse and axial forces act on the beam, and the Galerkin method is used to derive modal amplitude equations for the beam-foundation system. In the second case of the beam on tensionless foundation, loss of contact between the beam and the foundation can arise and determination of the loss-of-contact points is integrated into the solution procedure through a constraint equation. The static responses for both cases are examined as a function of the foundation nonlinearity and loading conditions. The steady-state response of the system subject to static and harmonic loads is studied by using numerical direct time-integration. Numerical challenges and the accuracy of this approach are discussed, and predictions of solutions by the three-mode and five-mode approximate models are compared to establish convergence of solutions. Frequency responses are studied for a range of foam nonlinearities and loading conditions.

Publisher

ASME International

Subject

General Engineering

Reference26 articles.

1. Experimental Techniques and Identification of Nonlinear and Viscoelastic Properties of Flexible Polyurethane Foam;Nonlinear Dyn.,2000

2. Application and Validation of Practical Tools for Nonlinear Soil-Foundation Interaction Analysis;Earthq. Spectra,2010

3. Non-Linear Viscoelastic Laws for Soft Biological Tissues;Eur. J. Mech. Solids,2000

4. A Critical Review on Idealization and Modeling for Interaction Among Soil-Foundation-Structure System;Comput. Struct.,2002

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3