Influence of Near Hole Pressure Fluctuation on the Thermal Protection of a Film-Cooled Flat Plate

Author:

Burdet André1,Abhari Reza S.2

Affiliation:

1. Gas Turbine Business, Alstom (Switzerland) Ltd., CH-5242 Birr, Switzerland

2. Laboratory of Energy Conversion (LEC), Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETHZ), CH-8092 Zürich, Switzerland

Abstract

Abstract The pulsation of film cooling jets in turbines is driven by the near hole pressure fluctuation caused by the deterministic interaction of stator/rotor blade rows. Jet pulsation is characterized by the coolant near hole reduced frequency Ωc and the pulsation amplitude coefficient Ψ. The fluctuation of the near hole pressure is simulated by setting a time-varying signal of static pressure for the outlet boundary condition of a film-cooled flat plate configuration. It is observed that the fluctuation of the near hole pressure influences the blowing ratio, hence the thermal protection downstream of the injection site. For a low mean blowing ratio (BR¯=0.75), low-medium pulsation frequencies (Ωc⩽0.10) are found to be slightly detrimental to the thermal protection versus a steady injection. On the contrary, for high pulsation frequencies (Ωc⩽0.17), the thermal protection becomes better due to periodic jet disintegration into the wall surface caused by a higher level of transverse kinetic energy of the jet pulse. In addition, the overlapping of jet pulses appears to help the constant temporal spreading of coolant over the wall surface. For a higher mean blowing ratio (BR¯=1.25), jet pulsation enhances lift-off so that the thermal protection is, in general, worse compared to a steady injection. Overall, the range of jet pulsation presented in this study affects moderately the thermal protection of the downstream surface.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3