High-Definition Metrology Based Spatial Variation Pattern Analysis for Machining Process Monitoring and Diagnosis

Author:

Wang Hui1,Suriano Saumuy1,Zhou Liang1,Hu S. Jack1

Affiliation:

1. The University of Michigan, Ann Arbor, MI

Abstract

Non-contact high-definition measurement technology, such as laser holographic interferometry, makes it feasible to quickly inspect dimensional variation at micron level, providing up to 2 million data points over a surface area of up to 300×300 mm2. Such high-definition metrology (HDM) data contain rich spatial variation information but it is challenging to utilize this information for process monitoring and control. The spatial distribution of the data is in high-dimensional form and may show nonlinear patterns. Conventional statistical process monitoring and diagnostic schemes based on simple test statistics and linear statistical process models are incapable of capturing the complex surface characteristics as reflected by large amounts of spatial data. This paper develops a framework for efficient monitoring of spatial variation in HDM data using principal curves and quality control charts. Since large scale surface variation patterns (caused by fixturing and part bending) may camouflage those in the smaller scale (generally associated with tooling conditions), it is essential to separate the patterns in these scales and monitor them individually. At each scale, process monitoring is implemented in a sequential manner by monitoring the overall spatial features followed by localized variation identification if an out-of-control condition is detected. To examine the overall spatial characteristics, a principal-component-analysis (PCA) filtered principal curve regression is proposed in conjunction with multivariate control charts whereby nonlinear patterns of spatial data are extracted and monitored. When the overall monitoring indicates a problem, the identification of a surface variation change can be achieved through localized monitoring over each surface region based on variogram pattern analysis and control charts. The location of surface region change provides clues for variation source diagnosis. The proposed method is illustrated using simulated HDM data.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High Definition Metrology-Based Quality Improvement of Surface Texture in Face Milling of Workpieces With Discontinuous Surfaces;Journal of Manufacturing Science and Engineering;2021-08-05

2. Surface Monitoring;High Definition Metrology Based Surface Quality Control and Applications;2019

3. Random field modeling with insufficient field data for probability analysis and design;Structural and Multidisciplinary Optimization;2014-11-04

4. Sequential monitoring of surface spatial variation in automotive machining processes based on high definition metrology;Journal of Manufacturing Systems;2012-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3