The Effects of Integration Time and Size-of-Source on the Temperature Measurement of Segmented Chip Formation Using Infrared Thermography

Author:

Heigel Jarred C.1,Whitenton Eric P.1

Affiliation:

1. National Institute of Standards and Technology, Gaithersburg, MD

Abstract

This paper illustrates the errors due to integration time and size-of-source effects when measuring the temperature of segmented chip formation using infrared (IR) thermography. Segmented chip formation involves narrow periodic shear bands that experience rapid heating and move at high velocities and accelerations. As a result, the values of the measured temperatures depend strongly on the temporal and spatial measurement window used. In this study, an ideal infrared camera is simulated to understand the effects of integration time and size-of-source on the measurement. This analysis does not consider the temporal and spatial transfer functions of the camera system, thus simplifying the analysis to be applicable to all IR thermography users. Incorporating appropriate transfer functions would make the analysis specific to a given camera system. Finite element analysis (FEA) simulation results provide a reference cutting process which is manipulated to mimic motion blur and size-of-source effects. For this purpose, the FEA results adequately represent the cutting process with rapid heating and high chip velocities. For the studied cases, size-of-source has relatively little impact on the measurement results when compared to the effects of integration time. Results show integration times from 1 μs to 90 μs significantly affect the measurement results. The maximum temperature measured by the simulated IR camera decreases from an FEA maximum of 735 °C to 668 °C at 90 μs integration time. Integration time significantly affects temperature measurement in the periodic shear band but does not significantly affect the simulated measurement error of the chip temperature near the tool rake face.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3