Affiliation:
1. Heat Transfer Laboratory, Brigham Young University, Provo, UT 84602
Abstract
The objective of this research was to characterize the flow structure under an impinging liquid jet striking a flat, normally oriented surface. The approach was the measurement of the free surface velocities of the jet prior to impingement and the surface velocities of the radially spreading liquid layer. A novel laser-Doppler velocimetry technique was used. The LDV system was configured such that the measurement volume would span the time-dependent fluctuations of the free surface, with the surface velocity being measured. The mean and fluctuating components of a single direction of the velocity vector were measured. It was found that the radial liquid layer data collapsed well over the range of jet Reynolds numbers 16,000 < Re < 47,000 if plotted in dimensionless coordinates, where the measured velocity was normalized by the average jet exit velocity and the radial coordinate was normalized by the nozzle diameter. Mean liquid layer depths were inferred from the velocity measurements by assuming a velocity profile across the layer, and were reported. Pre-impingement jet measurements suggest that the flow development is nearly complete two diameters from the nozzle exit.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献