Eigenstructure of First-Order Velocity-Stress Equations for Waves in Elastic Solids of Trigonal 32 Symmetry

Author:

Yang Lixiang1,Chen Yung-Yu1,Yu S.-T. John1

Affiliation:

1. The Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210

Abstract

AbstractThis paper reports the eigenstructure of a set of first-order hyperbolic partial differential equations for modeling waves in solids with a trigonal 32 symmetry. The governing equations include the equation of motion and partial differentiation of the elastic constitutive relation with respect to time. The result is a set of nine, first-order, fully coupled, hyperbolic partial differential equations with velocity and stress components as the unknowns. Shown in the vector form, the model equations have three 9×9 coefficient matrices. The wave physics are fully described by the eigenvalues and eigenvectors of these matrices; i.e., the nontrivial eigenvalues are the wave speeds, and a part of the corresponding left eigenvectors represents wave polarization. For a wave moving in a certain direction, three wave speeds can be identified by calculating the eigenvalues of the coefficient matrix in a rotated coordinate system. In this process, without using the plane-wave solution, we recover the Christoffel matrix and thus validate the formulation. To demonstrate this approach, two- and three-dimensional slowness profiles of quartz are calculated. Wave polarization vectors for wave propagation in several compression directions as well as noncompression directions are discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Density–velocity equations with bulk modulus for computational hydro-acoustics;Theoretical and Computational Fluid Dynamics;2013-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3