Affiliation:
1. The Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210
Abstract
AbstractThis paper reports the eigenstructure of a set of first-order hyperbolic partial differential equations for modeling waves in solids with a trigonal 32 symmetry. The governing equations include the equation of motion and partial differentiation of the elastic constitutive relation with respect to time. The result is a set of nine, first-order, fully coupled, hyperbolic partial differential equations with velocity and stress components as the unknowns. Shown in the vector form, the model equations have three 9×9 coefficient matrices. The wave physics are fully described by the eigenvalues and eigenvectors of these matrices; i.e., the nontrivial eigenvalues are the wave speeds, and a part of the corresponding left eigenvectors represents wave polarization. For a wave moving in a certain direction, three wave speeds can be identified by calculating the eigenvalues of the coefficient matrix in a rotated coordinate system. In this process, without using the plane-wave solution, we recover the Christoffel matrix and thus validate the formulation. To demonstrate this approach, two- and three-dimensional slowness profiles of quartz are calculated. Wave polarization vectors for wave propagation in several compression directions as well as noncompression directions are discussed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献