Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Cooling Performance of a Real Combustor Liner

Author:

Ceccherini Alberto1,Facchini Bruno1,Tarchi Lorenzo1,Toni Lorenzo1,Coutandin Daniele2

Affiliation:

1. University of Florence, Firenze, Italy

2. AVIO S.P.A., Rivalta di Torino (TO), Italy

Abstract

Due to the higher cooling requirements of novel combustor liners a comprehensive understanding of the phenomena concerning the interaction of hot gases with different coolant flows plays a major role in the definition of a well performing liner. An experimental analysis of a real engine cooling scheme was performed on a test article replicating a slot injection and an effusion array with a central large dilution hole. Test section consists of a rectangular cross-section duct and a flat perforated plate with 272 holes arranged in 29 staggered rows (d = 1.65 mm, Sx/d = 7.6, Sy/d = 6, L/d = 5.5, α = 30 deg); a dilution hole (D = 18.75 mm) is located at the 14th row. Both effusion and dilution holes are fed by a channel replicating combustor annulus, that allows to control cold gas side cross-flow parameters. Upstream the first effusion row, a 6.0 mm high slot ensure the protection of the very first region of the liner. Final aim was the measurement of adiabatic effectiveness of the cooling scheme by means of a steady-state Thermochromic Liquid Crystals (TLC) technique, considering the combined effects of slot, effusion and dilution holes. Experiments were carried out imposing three different effusion velocity ratios typical of modern engine working conditions (VReff = 3, 5, 7) and keeping constant slot flow parameters (VRsl = 1.1). CFD RANS calculations were also performed with the aim of better understanding interactions between coolant exiting from the slot and injected by effusion cooling rows. Numerical analysis revealed a large dependency on effusion velocity ratio. An in-house one-dimensional fluid network solver was finally used to compare experimental and numerical results with the ones predicted by correlations and then quantify the possibility of giving predictions. Both CFD and experimental results reveal that slot protection is reduced in the first rows by coolant injected with such high velocity ratios; nevertheless effusion, though in penetration regime, guarantees a significant effectiveness level in the more downstream region. Dilution hole alters the effectiveness growth rate, moreover leading to local protection lowering just after its injection.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3