Assessment of the Operational Performance of Fischer-Tropsch Synthetic-Paraffinic Kerosene in a T63 Gas Turbine Compared to Conventional Jet A-1 Fuel

Author:

Bester Nigel1,Yates Andy1

Affiliation:

1. University of Cape Town, Rondebosch, South Africa

Abstract

The performance implications of operating on Synthetic-Paraffinic Kerosene (SPK) were investigated using a RR-Allison T63-A-700 Model 250-C18 B gas turbine and compared to conventional Jet A-1. The SPK was aromatic–free and possessed a greater hydrogen/carbon ratio than petroleum derived Jet A-1. The variation in aromatic content had several implications with respect to soot and NOx emissions. Reduced aromatics also implied a reduction in the radiative heat transfer to the combustor liner. A simple model was used to explore the effect of H/C ratio on the adiabatic flame temperature, the combustor exit temperature and the engine efficiency via the impact on the gas properties and these were compared to the experimental data. It was found that operation with SPK changed directionally toward improving energy extraction via a turbine and an overall efficiency gain of about 1.2% was attained with operation on SPK through increased combustion efficiency, a reduction in liner pressure loss and an improvement in the combustion products properties. A modified combustion liner was fitted to enable the thermal loading on the combustor liner to be investigated and the expected trend with the SPK fuel was confirmed and quantified.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3