Development of Alumina-Forming Austenitic Alloys for Advanced Recuperators

Author:

Pint Bruce A.1,Brady Michael P.1,Yamamoto Yukinori1,Santella Michael L.1,Howe Jane Y.1,Trejo Rosa1,Maziasz Philip J.1

Affiliation:

1. Oak Ridge National Laboratory, Oak Ridge, TN

Abstract

A new class of corrosion- and creep-resistant austenitic stainless steels has been developed for advanced recuperator applications. The Al and Cr contents have been optimized to maintain a fully austenitic composition for creep strength while allowing the formation of a highly-protective external alumina scale at temperatures up to 900°C in the presence of water vapor. Strengthening was achieved via the formation of stable nano-scale MC type carbides and creep properties were comparable to commercially available advanced austenitic stainless steel alloys. These properties are particularly well-suited for thin-walled recuperators for both small and large gas turbines and fuel cells. By forming an alumina scale, long-term problems with Cr evaporation in the presence of water vapor in the exhaust gas are eliminated. Laboratory data are presented from humid air and microturbine exhaust gas to illustrate the oxidation resistance of this class of alloys at 650°–900°C and compared to results for some current commercial alloys. Alloy development is continuing in order to determine the effect of composition on performance over this temperature range.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3